3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces
نویسندگان
چکیده
Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.
منابع مشابه
Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive ...
متن کاملDesign and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dr...
متن کاملCylindrical chains of water drops condensing on microstructured lubricant-infused surfaces.
We studied the condensation of water drops on a micro-structured lubricant-infused surfaces. Hierarchical micro-prism surfaces were fabricated by soft imprinting with wet TiO2 nanoparticle paste. After hydrophobization, the patterned surfaces were infused with silicone oil as a lubricant. When cooling at high humidity (over 80%), water drops nucleate and start growing on the surface. Once they ...
متن کاملCondensation on surface energy gradient shifts drop size distribution toward small drops.
During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is ach...
متن کاملWetting and absorption of water drops on Nafion films.
Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detac...
متن کامل